Nautilus JupyterHub - Image & Resource Guide

Choose the right environment for your project

When launching a JupyterHub server on Nautilus, you must choose an Image. This image determines your computing environment, including pre-installed libraries and tools. Below is a guide to help you pick the right one based on your needs.

General Science & Programming

Image Name Best for Includes
Scipy Scientific computing, math, plotting NumPy, SciPy, Matplotlib
R Statistical analysis in R R language, base libraries
Julia High-performance scientific computing Julia language & base packages
Datascience (scipy, Julia, R) Multilingual environments Python, R, Julia pre-installed
Pyspark Big data processing using Python + Spark PySpark, Jupyter
All Spark Full Spark environment Spark (Scala, PySpark), Hadoop tools

Machine Learning & AI

Image Name Best for Includes
Tensorflow Deep learning with TensorFlow TensorFlow 2.x, Keras, Python
Pytorch Deep learning with PyTorch PyTorch, TorchVision
NRP Deep Learning & Data Science Full, PyTorch GPU-enabled PyTorch + full data science stack PyTorch, JupyterLab, Pandas, NumPy, Scikit-learn
NRP Deep Learning & Data Science Full, TensorFlow GPU-enabled TensorFlow + data stack TensorFlow, Keras, Matplotlib, Pandas

B-Data Series (Data Science Focused)

Image Name Best for Includes
B-Data python scipy Lightweight data analysis in Python     SciPy stack, Pandas
B-Data Julia Data science in Julia Julia + data science packages
B-Data R General R-based data analysis Tidyverse, base R
B-Data R tidyverse     Modern R workflows     ggplot2, dplyr, tidyr
B-Data R verse     Tidyverse + advanced packages     Tidyverse + extras
B-Data R geospatial R with geospatial tools     sf, raster, rgdal
B-Data R qgisprocess R with QGIS integration qgisprocess, sf

Desktop Environments (GUI Access)

Image Name Best for Includes
Selkies Desktop (Experimental) GUI-based testing environment     Linux desktop, minimal tools
NRP Desktop GUI   General GUI desktop for remote apps XFCE desktop
NRP Desktop GUI + Relion Cryo-EM data processing Relion software
NRP Desktop GUI + PRISM Scientific data visualization PRISM toolset

Specialized Tools

Image Name Best for Includes
NRP R Studio Server  R development in IDE     R + RStudio in browser
NRP Matlab     MATLAB users (license required)     MATLAB via browser
NRP OSGEO GIS and mapping tools GDAL, QGIS, GRASS

Resource Selection Reminders 

GPUs: Use only if required (e.g., training deep learning models)

Cores & RAM: Start small (e.g., 2 cores, 4-8 GB RAM) and scale as needed

GPU Type: Leave as Any unless you need specific hardware